

## (Development of) ITK DAQ & Test Setup

Any incomplete or inaccurate is solely on JZ



#### Introduction

- Survey what being developed and regularly discussed by such as
  - ITK Pixel Electronics group
  - ITK Pixel Readout group
  - ITK Strip DAQ group
- Develop the adequate test setups for multi module testing
- ❖ Align to the final readout system as possible



## Test Setup Functionality

#### Readout electrical objects

- Single chip (FE-I4, RD53, ABC130, ABCN250, etc)
- CMOS sensor/chips
- Module
- Stavelet (Strip)
- Stave

#### Readout optical objects

- Stavelet (Strip)
- Stave

#### Readout multiple objects

Multiple stave system



## **Development Variants**

- High Speed I/O (HSIO) based
  - HSIO and add-ons
  - HSIO-II and add-ons
- PCle based
  - YARR
  - FELIX
- Other commercial board based
  - USBpix
  - SEABAS
  - Atlys
- Something I must forgot
  - GLIB
  - **...** ...



## **US Institutes**

| WBS     | Description              | Institutes                                                |  |  |  |
|---------|--------------------------|-----------------------------------------------------------|--|--|--|
|         |                          |                                                           |  |  |  |
| 6.1.7   | Off-detector electronics |                                                           |  |  |  |
| 6.1.7.1 | TDAQ                     | ANL, BNL, SLAC                                            |  |  |  |
| 6.1.9   | Test Setups              | ANL, Oklahoma, Oklahoma St, SLAC, Stony Brook, Washington |  |  |  |

- 6.1.7 possibly to TDAQ WBS (being discussed)
- Current in PIX WBS, mainly working on development for HSIO(II) based system
  - Oklahoma State (power supply for HSIO connection), SLAC (HSIO(II)), Stony Brook (software), Washington (firmware)
- ❖ ITSDAQ development
  - Duke/ANL, started in Strip readout
- FELIX development
  - BNL/ANL, in TDAQ project

#### Pixel DAQ Activities (SLAC): HSIO-II / RCE

#### Predecessor HSIO + Gen-1 RCE served

- IBL stave loading + Q/A
- IBL connection/system tests
- Many pixel test beam setup
- Many test stands

Also ~30 HSIO serving strip upgrade test stands worldwide



#### $\Rightarrow$ A proven concept actually does the job

- More performant Gen-III RCE with ZYNQ is serving muon CSC readout for Run-2 operating stably since ~April.
- Combined versatile I/O on HSIO with enhanced software programmability with RCE on DTM mezzanine in a single compact setup => HSIO-II

#### Pixel DAQ Activities (SLAC): RCE/HSIO Distribution

- HSIO-II prototype test verified all functionalities.
- Issues identified incorporated in new revision.
- Pre-prod two board manual loading had bizarrely many faults. Traced to misuse of a new 'superheat gun'...
- Restart at loading company (AMTECH) Jul/6 after their site move.

| Institution       | СОВ | DPM | DTM | RTM | HSIO-II | strip-<br>interface | Pixel-<br>interface | IBL stave interface |
|-------------------|-----|-----|-----|-----|---------|---------------------|---------------------|---------------------|
| KEK               | 0   | 0   | 2   | 0   | 2       | 0                   | 2                   |                     |
| MPI Munich        | 0   | 0   | 1   | 0   | 1       | 0                   | 1                   |                     |
| Freiburg          | 0   | 0   | 2   | 0   | 2       | 2                   | 0                   |                     |
| Adelaide          | 1   | 2   | 1   | 1   | 2       | 2                   | 0                   |                     |
| Geneva + Bern     | 0   | 0   | 2   | 0   | 2       | 0                   | 2                   |                     |
| Ljubljana + DBM   | 0   | 0   | 3   | 0   | 3       | 1                   | 0                   | 2                   |
| UCL (for UK 2014) | 5   | 10  | 6   | 5   | 2       | 0                   | 2                   |                     |
| UCL (for UK 2015) | 1   | 4   | 4   | 1   | 2       | 0                   | 2                   |                     |
| Gottingen         | 0   | 1   | 1   | 0   | 1       | 0                   | 0                   |                     |
| Oxford (2014)     | 1   | 2   | 2   | 1   | 1       | 0                   | 1                   |                     |
| Oxford (2015)     | 1   | 4   | 1   | 1   | 0       | 0                   | 0                   |                     |
| IFAE Barcelona    | 0   | 0   | 1   | 0   | 1       | 0                   | 1                   |                     |
| INFN Genova       | 0   | 0   | 2   | 0   | 2       | 0                   | 2                   |                     |
| CERN PH-ADE-ID    | 0   | 0   | 2   | 0   | 2       | 0                   | 1                   | 1                   |
| BNL               | 0   | 0   | 1   | 0   | 1       | 0                   | 1                   |                     |
| LBNL              | 0   | 0   | 1   | 0   | 1       | 0                   | 1                   |                     |
| NYU               | 0   | 0   | 1   | 0   | 1       | 1                   | 0                   |                     |
| U Illinois Urbana | 0   | 0   | 1   | 0   | 1       | 1                   | 1                   |                     |
| U Washington      | 0   | 0   | 1   | 0   | 1       | 0                   | 1                   |                     |
|                   | 9   | 23  | 36  | 9   | 29      | 7                   | 19                  | 3                   |

Other components already in various stage of production. Hoping to conclude production by early August.

#### HSIO

- Oklahoma State U. group is committed to producing a power supply for Sensor Modules used with HSIO
- Steven Welch has designed a power supply capable of supplying multiple modules with HV and LV power
- Graduate student Thilak
  Madhuranga is developing the software interface for the power supply
- □ Plan to complete HSOI power supply design by the end of 2015



## FELIX Firmware Development



- Developing kits and testing setup at BNL/ANL
- Initial version of firmware and software developed
- Full chain functionality demonstrated

GBT transmission, TTC handling, central router, PCIe engine, packet processing, network



## Proposal: ITk Pixel DAQ Prototyping



#### Request support from US ATLAS to support UW EE graduates

- Common Firmware/Software development
  - Based on pyBAR/BASIL + pit-code experience
  - Benchmark calibration performance of each HW
  - Test conceptual design of FELIX-ITk
- Scalability Requirement
  - Module/sensor lab test O(4)
  - Testbeam system/stave QA O(10)
  - Production system O(1000)

- Hardware support
  - RCE GenIII/HSIO II
  - USBPIX3
  - SEABAS2
  - YARR
  - FELIX PC/PCI E
    e.g. <u>NETFPGA-SUME</u>

#### FELIX-ITK I

original design: calibration control, trigger and analysis are behind the switch

#### 

Hardware

#### FELIX-ITK II

Calibration Path

move all calibration loop to FELIX PC (maybe more realistic)



Shih-Chieh Hsu

# Calibration Path

## SEABAS2, pyBAR/BASIL



- SEABAS2 : General purpose readout board with SiTCP (KEK)
- pyBAR/BASIL: Bonn ATLAS Readout system based on modular rapid DAQ development design (Bonn, UW. Hawaii, ...)
- Highlight: Adopted by <u>D3 experiment</u>; sw support EUTelescope,
- Data taking: 4 FEI4 chip, MUX adapter, T3MAPS
- Calibration path: raw hits are all transmitted to the host PC for analysis.
  Permits easy access of low level information for pixel R&D.
- UW contribution (collaboration with Japan ATLAS, LBNL and Bonn)
  - Migration of Basil/pyBAR to SEABAS
  - T3MAPS readout and MUX/4-chip readout

# cmd/trig/data pass through ctrl/hist/fit

## **ITSDAQ** Development



- Duke/ANL working on firmware for ABC and CMOS testing
- A testbed with Atlys and HVStripV1





#### **Module Production Test**

© Maurice Garcia-Sciveres, Philippe Grenier

- Making a common, cheap and automated test system?
- Build test system and distribute to all testing sites.
- Parts of the test system might be provided by several groups.





#### **Module Production Test**

Source travels on rail system above test boxes (serves any number of test boxes)



500VDC, 10uA 12VDC, 8A 2VDC, 4A user supplied

ITk Pixel Module WG Meeting – 28 May 2015







#### **Points**

- ❖ Various test stand configurations vs same one everywhere (if ever possible, when possible)
- (common/standard) firmware and software
  - Core firmware
  - General control firmware
  - Network interface firmware
  - Readout firmware
  - TTC related firmware
  - GBT firmware
  - **...** ...
- Testing procedures and validation
  - Across different test stands
- Full chain test setup with both electrical and optical



## Stop



## **USBpix**







- Commercial FPGA module
- Upgrade to be compatible with existing interfaces
- Interface for CMOS testing
- Support for future PIX chips (RD53)
- Connectivity for multi-chip module/stave testing



## **SEABAS**



- General purpose readout board with SiTCP
- Readout up to four FE-I4s
- ❖ Used also for beam tests for ABC-130 single chip and ABCN250 super module



## Atlys



- Digilent Atlys board with ITSDAQ
- **❖** VMOD-IB
- Driver board
- Being used also for CMOS testing
- Sufficient resources to support single-chip, hybrid and module



## **YARR**







- ❖ Simple PCI Express Carrier (SPEC) Board
- Adapter board developed specifically for FE-I4



#### **FELIX**



- 40 Gbps Ethernet card (or 56 Gbps infiniband)
- Demonstrator with 24 bidirectional 10Gpbs links
- **GBT** protocol in different configurations
- TTC/BUSY handling



### **HSIO**

- Capacity for up to 16 FE chips
- Interface Board
  - IBL interface board
  - Si-strip interface board
  - Pixel interface board



- Clocky for programmable freq clock
- Clucky for Interface to EUDAQ TLU
- Driver (with interface board) talks to ABC130 Single Chip Board













## HSIO-II





- Gen-3 RCE mezzanine
- **❖** TTC mezzanine
- Adapter board with 18 (8) RJ45
- Capacity for testing of 16 FE-I4 chips